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Abstract

This paper considers the effects of different types of faults on a proton exchange membrane fuel cell model (PEMFC). Using databases (which
record the fault effects) and probabilistic methods (such as the Bayesian-Score and Markov Chain Monte Carlo), a graphical—probabilistic structure
for fault diagnosis is constructed. The graphical model defines the cause-effect relationship among the variables, and the probabilistic method
captures the numerical dependence among these variables. Finally, the Bayesian network (i.e. the graphical-probabilistic structure) is used to
execute the diagnosis of fault causes in the PEMFC model based on the effects observed.

© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Environmental issues have increased the demand for less pol-
luting energy generation technologies. Governmental actions
to support a hydrogen-based economy are under way, as well.
Most recent developments in proton exchange membrane fuel
cell (PEMFC) technology have made them commercially avail-
able for stationary and mobile applications in the range of up to
200kW.

Fuel cells (FCs) convert the energy contained in hydrogen
directly into electricity with only water and heat as the prod-
ucts of the reaction. Under certain pressure, hydrogen (Hy) is
supplied into a porous conductive electrode (the anode). The
H; spreads through the electrode until it reaches the catalytic
layer of the anode, where it reacts to form protons and electrons.
The H* ions (or protons) flow through the electrolyte (a solid
membrane), and the electrons pass through an external electri-
cal circuit, producing electrical energy. On the other side of the
cell, the oxygen (O,) spreads through the cathode and reaches
its catalytic layer. On this layer, the O, H* protons, and elec-
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trons produce liquid water and residual heat as sub-products
[5].

Several papers have been published considering FC opera-
tion in normal conditions; but only few of them addressed the
FC operation under fault analysis. Faults are events that cannot
be ignored in any real machines, and their consideration is essen-
tial for improving the operability, flexibility, and autonomy of
commercial equipment.

In this paper, Bayesian network algorithms are applied for
the construction of a graphical-probabilistic structure to fault
diagnosis in PEMFCs.

This paper is organized as follows. In Section 2, the basic con-
cepts for the mathematical model of a PEMFC are introduced.
In Section 3, four types of faults in PEMFC are considered:
faults in the air fan; faults in the refrigeration system; growth
of the fuel crossover; and faults in the hydrogen pressure. Sec-
tion 4 introduces a short background of Bayesian networks and
learning algorithms to apply on fault diagnosis of PEMFC.

2. The fuel cell model

A mathematical model of a fuel cell (FC) was used to study the
possible fault effects. This model consists of an electro-chemical
and a thermo-dynamical sub-model.


mailto:luis.riascos@ufabc.edu.br
dx.doi.org/10.1016/j.jpowsour.2006.12.003

268 L.A.M. Riascos et al. / Journal of Power Sources 165 (2007) 267-278

2.1. The electrochemical model

The output voltage Vic of a single cell can be defined as the
result of the following expression [11]:

VFC = ENernst - Vact - Vohmic - Vcon (1)

ENernst 18 the thermodynamic potential of the cell representing
its reversible voltage:

ENemst = 1.229 — 0.85 x 1073(T — 298.15)
1
+4.31 x 107°T |In(Py,) + 5 In(Poy) 2)

where: Py, and Po, (atm) are the hydrogen and oxygen pres-
sures, respectively, and 7 (K) is the operating temperature.

Viact 18 the voltage drop due to the activation of the anode and
the cathode:

Vaet = =61 + & T + &T In(co,) + &4T In(Ipc)] 3)

where &; (i = 1-4) are specific coefficients for every type of FC,
Irc (A) is the electrical current, and co, (atm) is the oxygen
concentration.

Vohmic 1s the ohmic voltage drop associated with the conduc-
tion of protons through the solid electrolyte, and of electrons
through the internal electronic resistance:

Vohmic = Irc(Rm + Rc) 4

where Rc (£2) is the contact resistance to electron flow, and Ry
(£2) is the resistance to proton transfer through the membrane:

omé
Ry = 5
M A 9
181.6[1 + 0.03(Irc/A) + 0.062(T/303)>(Irc/ A)*]
oM =

[ — 0.634 — 3(Ipc/A)] exp[4.18(T — 303/ 7)]
©)

where pp (€2 cm) is the specific resistivity of membrane, £ (cm)
is the thickness of membrane, A (cm?) is the active area of the
membrane, and V is a coefficient for every type of membrane.
Veon represents the voltage drop resulting from the mass trans-
portation effects, which affects the concentration of the reacting

gases:
J
6
Jmax ) ( )

where B (V) is a constant depending on the type of FC, Jp,x 1S
the maximum electrical current density, and J is the electrical
current density produced by the cell. In general, J=Joy +Jp
where Jo is the real electrical output current density, and J;, is
the fuel crossover and internal loss current.

Considering a stack composed by several FCs, and as first
order analysis, the output voltage is Vgck =nrVEc, where nr is
the number of cells composing the stack. However constructive
characteristic of the stack such as flow distribution and heat
transfer should be taken [1,10,19].

In this paper, a mathematical model for a 500 W stack (man-
ufactured by BCS Technologies) is used. The parameters for

Veon = —Bln <1 —

Table 1

Parameters of a PEMFC BCS, 500 W
Parameter Value

nr 32

A 64 cm?

l 178 pm

Po, 0.2095 atm
Py, 1 atm

Rc 0.003 Q2

B 0.016 V

131 —0.948

& 0.00286 + 0.0002 In A + (4.3 x 1073)1n CH,
& 7.6 %1073

& —1.93 x 107
v 23.0

Jn 3 mA cm?
Jinax 0.469 A cm?

this particular model are presented in Table 1. In [6] the polar-
ization curve obtained with this model is compared to the
polarization curve of the manufacturing data sheet to validate the
model.

In general, these parameters are based on manufacturing data
and laboratory experiments, and their accuracy can affect the
simulation results. In [5], a multi-parametric sensitivity anal-
ysis is performed to define the importance of the accuracy of
each parameter. Basically, the parameters are classified in three
groups: insensitive (A, Rc, £), sensitive (Jy, B, ¥, £4), and highly
sensitive parameters (Jmax, £3, &1). The accuracy was analyzed in
normal conditions, considering variations around +10% of their
normal values. However, in fault conditions, those variations can
be stronger, as presented in Sections 3.1-3.4.

2.2. The thermo-dynamical model

The calculation of the relative humidity and the operating
temperature of the FC essentially compose the thermo-
dynamical model [7].

2.2.1. Temperature
The variation of temperature is obtained with the following
differential equation:

a7 AQ

dr =~ MC,

)

where M (kg) is the whole stack mass, Cs (J K-! kg’l) is the
average specific heat coefficient of the stack, AQ (Js~!) is the
rate of heat variation (i.e. the difference between the rate of
heat generated by the cell operation (Qgen) and the rate of heat
removed). Heat can be removed by the air flowing inside the
stack (Qreml), by the refrigeration system (Qremz), by water
evaporation (Qrem3 ), and by heat exchanged with the surround-
ings (Qremy)-

In this FC system, the refrigeration system is turned on when
the operating temperature is higher than 50 °C.
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2.2.2. Relative humidity

A correct level of humidity should be maintained in the FC.
This level is measured through the relative humidity HR. The
relative humidity HRyy¢ of the output air is calculated from the
equation:
HRyy = M ®)

Psat,out

where Pw,, is the partial pressure of the water in the inlet air;
Pw,,, 1s the partial pressure of the water generated by the chem-
ical reaction [11]; Py out 1S the saturated vapor pressure in the
output air. Considering that HRqy¢ X Pgar_out = Pwout, EQ. (8)
establishes the balance of water: output=input+ internal gen-
eration.

The Pg, is calculated from the equation:

b/T+c)
P70
If T>273.15 (°K), then a=—4.9283; b=—6763.28; ¢ =54.22;

If the HR is much smaller than 100%, then the membrane
dries out and the conductivity decreases. On the other hand, a
relative humidity greater than 100% produces accumulation of
liquid water on the electrodes, which can become flooded and
block the pores; this makes gas diffusion difficult. The result of
these two conditions is a fairly narrow range of normal operat-
ing conditions. In conclusion the ideal operational condition is
HR =100%. In this equipment, the control system adjusts the
air-reaction volume to maintain the HR close to 100%. In [16]
this control technique has been implemented.

In abnormal conditions some parameters change, i.e. flooding
and drying condition affects Rc and Ry, respectively. Also in
[9] the variation of the resistances had been associated with fault
detection of flooding and drying.

Fig. 1 (adapted from [11]) illustrates the variation of tem-
perature and relative humidity for different stoichiometry air
relationships (A =2, 4). The stoichiometry X is the relationship
between inlet air divided by the air necessary for the chemical

PSZI[ = Ta €X
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Fig. 1. Temperature and relative humidity for A =2, 4 (adapted from [11]).
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Fig. 2. Variation of output HR vs. input HR.

reaction. In general, the maximum efficiency occurs at about
80% of fuel utilization (H,) and 50% of oxygen utilization.
Therefore, for a good concentration of O, in the air through
the entire FC, A should be bigger than 2 [11].

To prevent the membrane from drying, some researchers (e.g.
[11]) have proposed extra humidification on the input air. How-
ever, the variation in the HR of the input air produces a very small
adjustment in the output HR; for example, a variation of 10%
on the input HR represents a variation of approximately 2% on
the output HR. Thus, in many cases, the extra humidification of
the input air is not enough to resolve the drying problem. Fig. 2
illustrates the variation produced on the HR of output air by the
adjustment in the HR of input air.

2.3. Normal operation of a fuel cell

Fig. 3 illustrates the evolution of a few PEMFC variables in
normal operating conditions as a function of time. The variables
are: voltagegick (V), electrical current Irc (A), temperature (°C),
volume of air flow (Ls™!), and stoichiometry air relationship
A. In this test, the FC supports a constant-load demand; thus,
the voltage and current should vary by themselves to maintain
this demand (i.e. the output power would be constant). Also the
control system adjusts the air-reaction volume to maintain the
HR close to 100%.

The simulation begins with the FC system in stand-by (i.e.
without load, and at environmental temperature, approximately
25°C). After the load requirement, the electrical equilibrium
is reached in less than 3 s (e.g. the equilibrium of voltage and
current). On the other hand, the temperature begins to increase
until, at #=10min, it reaches 50°C. Then, the refrigeration
system is turned on. The temperature increases slowly until
the thermo-dynamical steady state is reached after =40 min.
Note that variations on the temperature have influenced the
evolution in the airflow and A. Also, variations in voltage and
current are performed, especially in the first 10 min, but they
are produced by a slower evolution of the thermo-dynamical
state.
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Fig. 3. Evolution of variables of a FC in normal conditions deriving from a mathematical model in MATLAB®.

. Faults in fuel cells

In general, two types of fault detection can be considered:

Faults that can be detected by monitoring a specific variable.
For example, the leak of fuel can be detected by installing a
specific gas sensor. In this case, a diagnosis is not necessary.
Faults that cannot be detected directly by monitoring or faults
that need some type of diagnosis.

Usually, fault detection on commercial fuel cell equipment is
limited to detection of faults of the first type. This work focuses
on fault detection of the second type.

Four types of faults in PEMFCs are considered in this study:
(1) fault in the air fan, (2) fault in the refrigeration system, (3)
growth of the fuel crossover, and (4) fault in the hydrogen pres-
sure. The effects of these faults are included in the mathematical
model to analyze the behavior of the FC system in fault operation
conditions.

3.1. Fault in the air reaction fan

A reduction of the reaction air by a fault in the air fan can
produce two major effects: (1) accumulation of liquid water than
cannot be evaporated and (2) reduction of O, volume below that
necessary for a complete reaction with the H.

A common method for removing excess water inside the FC
is using the air flowing through it. The correct variation of the
stoichiometry A maintains the HR proximal to 100%. However,
when a fault in the air fan takes place, this becomes impossible.
This fault reduces the air reaction flow, which reduces the water

evaporation volume and permits the accumulation of water. A
great accumulation of water causes the flooding of electrodes
making gas diffusion difficult and affecting the performance
of the FC. These effects are simulated by Eq. (9), which was
obtained empirically.

Ji max(0)
(Wacum(k)/consty

Wacum(k)
const;

0.8
RC(k)=RC(0)~( ) o Jmax() =

)1.2

where Jmax(0) 18 the value of the maximum electrical current
density at the initial state (normal condition), Rcg) is the value
of the variable at the initial state (normal condition), Wacum(k)
is the volume of water accumulated at instant k, and const; is a
constant defining when the electrodes are led to flooding.

The second effect of a fault in the air fan occurs when A
is below the practical and recommended value. In this case,
the Oy concentration is reduced and the exit air completely
depleted of O,. This reduction of O, concentration produces a
negative effect on the Enemst (Eq. (2)) and increase on the Vi
(Eq. (3)). In this case, the O, concentration changes according
to empirical Eq. (10):

o = COx0)
R consty /A

where COxp) is the O, concentration at instant k, co,, is the nor-
mal O, concentration in the air, and const; is a constant defining
when A is lower than necessary for the chemical reaction.

Fig. 4 illustrates the evolution of a few variables when a fault
in the air fan is considered. The variables are voltageggack (V),
Irc (A), temperature (°C), air flow (Ls™!), A, and accumulated
water (L). In this case, the starting point of the simulation

(10)
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Fig. 4. Evolution of variables by fault in the reaction air fan.

(t=0) is an FC on thermal steady state. The fault in the air
fan takes place at #=30min. The initial effect is the variation
of the airflow volume, which reduces A close to 1, affecting
voltage and Irc. Also, this fault produces accumulation of
liquid water and, at =45 min, the accumulation of water is
enough to produce variation on the resistance of electrodes
affecting voltage and Igc continuously.

3.2. Fault in the refrigeration system

The refrigeration system maintains temperature within the
normal operating conditions. When the temperature increases,
the reaction air has a drying effect and reduces the relative
humidity HR. A low HR can produce a catastrophic effect on
the polymer electrolyte membrane, which not only totally relies
upon high water content, but is also very thin (and thus prone to
rapid drying out). The drying of the membrane changes the resis-
tance of membrane to proton flow (Rv, Eq. (4)). Rv is affected
by the adjustment of i (Eq. (5)), which varies according to
empirical equation (11):

140)
(consts/ HRout(k))l' 12

Vi = an
where, consts defines when the membrane is led to drying.

The variation of Ry produces an increase in the ohmic voltage
drop Vohmic, €quation (4), and it produces the reduction of Vgc,
Eq. (1).

Fig. 5 illustrates the evolution of the variables voltageguck
(V), Irc (A), temperature (°C), air flow (L s~1), A, and heat
removed by the refrigeration system Qrem2 (W), when a total
fault in the refrigeration system is considered at =30 min.

The initial fault effect (at t=30min.) is the increase in
temperature. Then, the FC controller automatically reduces A,

maintaining the performance of the FC. However, when A =2
(i.e. the minimum value recommended) is not further reduced,
and then the drying effect has a continuous influence on the
voltageguck, IFC, air flow and other variables.

3.3. Increase of fuel crossover (J,)

There is a small amount of wasted fuel that migrates through
the membrane. It is defined as fuel crossover—some hydrogen
will diffuse from the anode (through the electrolyte) to the cath-
ode, react directly with the oxygen, and produce no current for
the FC.

In normal conditions, the flow of fuel through the membrane
(Jn) is very small, typically representing only a few mA cm?. A
sudden increase in this variable can be associated with rupture
of membrane.

This variation of J,, produces an increase in the concentration
voltage drop (Veon Eq. (6)), and therefore a reduction of Vgc,
Eq. (1).

Fig. 6 illustrates the evolution of the variables voltagegck
(V), Irc (A), temperature (°C), air flow (L s~1), and A, when a
sudden variation of J;, is performed from 0.003 to 0.1 A cm? at
t=30min.

The initial effect is a variation on all the variables including
the power produced by the FC. The FC controller automati-
cally adjusts the stoichiometry (by reducing the airflow) until, at
t=47 min, it reaches A =2, and then cannot be further reduced.
This affects the output HR and other variables.

3.4. Fault in the hydrogen feed line

In general, for mobile and stationary applications, the hydro-
gen is supplied from a high-pressure bottle and reduced by a
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Fig. 5. Evolution of variables by fault in the refrigeration system.

pressure controller. In normal conditions, the hydrogen pressure
is assumed to be constant (1 atm). Variation in the hydrogen
pressure affects the performance of the FC. A lower pressure
negatively affects the performance of the FC. The reduction
of Hy pressure reduces the density of current J affecting Irc,
decreases Enernst €quation (2), increases Ve equation (3), and
has a corresponding effect on Vpc, equation (1).

Fig. 7 illustrates the evolution of the variables voltagegack
(V), Irc (A), temperature (°C), air flow (Ls™!), A, and H, pres-

sure (atm), when a reduction on the Hy pressure is considered
from 1 to 0.2 atm at =30 min.

Fault in the oxygen feed line (such as a fault produced by
blocking the air filter), can be an interesting issue in a fault-
tolerant FC system. In practical applications, the oxygen is
supplied from the air where it has a constant pressure. There-
fore, a fault in the air reaction feed line does not produce a
variation in the air (or oxygen) pressure; instead, a reduction
on the O, concentration can be produced. However, the effects

400
30
350
—_ 20_
S _
2 z s
Q = 5 300
£ 20 { <& o
S 15 el
> —\.——-—— o 250
10 - i 10 ‘ : 200 ‘
0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60
time (min) time (min) time (min)
70
0.6 0.1
65}
3 @ 05 T
S 60 = 3
o 60}
5 = 04 =~ 005 ]
= = i
585 o
0.3
50 0 : : ' :
0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60
time (min) time (min) time (min)

Fig. 6. Evolution of variables by increasing Jj,.
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of this fault are similar to a fault in the air reaction fan (see
Section 3.1).

In Section 3, the effects of four types of faults on the FC
operation were explained simply and directly. But, when a fault
happens, an interconnected dependence among the variables is
performed. That makes diagnosis of the fault cause difficult.
Figs. 4-7 illustrate this dependence where, in all cases of faults,
all the variables have performed changes.

By implementing those types of faults, and their effects, on
the mathematical model of the FC, databases for recording the
evolution of variables in fault conditions can be constructed.
Then, probabilistic approaches can be applied on the databases
to qualify and quantify the dependency relationship among the
variables. In the next section, Bayesian networks are considered
for the construction of a graphical-probabilistic structure based
on databases.

4. Bayesian networks for fault diagnosis

Bayesian networks have been extensively applied to fault
diagnosis, e.g. [12] and [3]; however, in the area of fuel cells,
it is a new field. In [12], a Bayesian network is implemented
for controlling an unsupervised fault tolerant system to generate
oxygen from the CO, on Mars atmosphere. In [3], Bayesian net-
work is applied for fault diagnosis in a power delivery system.
One advantage of Bayesian network is that it allows the com-
bination of expert knowledge of the process and probabilistic
theory for the construction of a diagnostic procedure; neverthe-
less, both are recommended for the construction of a “good”
Bayesian network.

A Bayesian network is a structure that graphically mod-
els relationships of probabilistic dependence within a group
of variables. A Bayesian network B =(G,CP) is composed of

the network structure and the conditional probabilities (CP). A
directed acyclic graph (DAG) represents the graphical structure
G, where each node of the graph is associated to a variable Xj,
and each node has a set of parents pa(X;j). The conditional prob-
abilities CP, numerically capture the probabilistic dependence
among the variables [2].

The construction of a graph to describe a diagnostic process
can be executed in two ways:

e Based on human knowledge about the process, where relation-
ships among variables are established to define the criteria for
choosing the next state (i.e. the relationship between variables
and parents);

e Based on probabilistic methods using databases of records.

The construction of a Bayesian structure G based on
knowledge can be relatively simple; but its efficacy depends
completely on the human expert knowledge about that domain.

The implementation of probabilistic methods for the struc-
ture learning can follow two approaches: constraint-based and
search-and-score. In the constraint-based approach, the starting
point is an initially given graph G. And then, edges are removed
or added if certain conditional independencies are measured in
the database. In the search-and-score approach, a search through
the space of possible DAGs is performed for finding for the best
DAG. In this research, the Bayesian-score (K2) [4] and Markov
chain Monte Carlo (MCMC) [14] algorithms are applied. The
K2 and MCMC algorithms are relatively easy to be applied
on an automatic generation of the graph, and they are already
implemented in the MatLab BNToolbox [13].

The number of DAGs, as a function of the number of nodes
(f(n)), grows exponentially with n. According to [4], a recursive
function can be used to know the number of DAGs as function
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of the number of variables:

fo =3 =0 (5) 207 fn =) (12)

i=1

For example, a model with 16 variables (n=16) has
8.38 x 1040 possible DAGs. Thus, an exhaustive search on the
space of all DAGs is not practical. Therefore, a local (e.g. K2)
or a stochastic (e.g. MCMC) search should be made.

In this work, the construction of a Bayesian network for
fault diagnosis begins with the generation of a graph applying
probabilistic methods and, after that, refined using constrains
and domain knowledge. The complete sequence consists of the
following steps:

1. Construction of the database—the records are provided
from a mathematical model of a PEMFC implemented on
MatLab®. Field experiments could also provide those records
as considered in [16]; however, two major problems are
pointed out: (a) a large amount of data is necessary where
the generation of each case takes around 2 h of supervised
experiments, and (b) variables such as Qgen, flooding, A, etc,
impose additional challenges to be monitored.

2. Implementation of search-and-score algorithms (K2 and
MCMC) to find the initial structure. The probabilistic
approaches were implemented using the BNT (Bayesian Net-
work Toolbox) developed for MatLab® [13].

3. Constraint-based conditions and knowledge are applied for
improving the structure.

4. Calculation of conditional probabilities. The conditional
probabilities are calculated on the resulting structure.

4.1. Database generation

In this research, the diagnosis is executed at a specific
moment, only if abnormal evolution of any variable is mon-
itored; the idea is to associate this evolution with symptoms
of incipient faults. Then binary states of the variables are gen-
erated (O=normal, 1 =abnormal). The general procedure is to
monitor a specific variable; if after a fault takes place and
the value of such variable is off a certain tolerance band,
then a flag should be turned to “1”. Fig. 8 represents the
range of tolerance of the Irc and the evolution after a fault at
t=30min.

The next step is the construction of a vector containing the
value of all variables. This vector corresponds to a single case
in the database with values of all variables in a certain period.

From the mathematical model, the evolution of variables that
can be difficult to monitor on a real machine (such as Qgen or HR)
can be observed. Records of all variables are essential for the
construction of the network structure avoiding hidden variables.

The variables considered are the following:

Jn =fault by fuel crossover

aF =fault in the air fan

rF =fault in the refrigeration system
H; =fault by low H; pressure

20+ range of i
tolerance

< before /
2 the fault

15 ‘\ after -

the fault
10 1 1 1 1 1
0 10 20 30 40 50 60
time (min)

Fig. 8. Evolution of Irc by a fault at =30 min.

Flow = volume of air flow

Qgen = generated heat

LL = stoichiometry air relationship A

HRy¢ = output relative humidity

Drying = drying of membrane

Flood =flooding of electrodes

Ov =overload (i.e. the FC is working close to the maximum
load; in those cases, same variables can perform a different
evolution)

Volt = voltagegiack

I =Igc electrical current of the FC

T =temperature

Power = difference between real output power and required
load

pH> =H; pressure

A database with 10,000 cases was constructed for the struc-
ture learning of a Bayesian network for fault diagnosis in fuel
cells. The database considers different operational conditions
with different fault causes simulated and, selected in a random
sequence.

A vector for fault diagnosis in FC has the structure presented
in Fig. 9.

4.2. The Bayesian-score (K2) algorithm

The K2 algorithm [4] is a very useful search algorithm. Ini-
tially, each node has no parents. It then incrementally adds those
parents, the addition of which increases the score of the result-
ing structure even more. When the addition of no single parent
increases the score, it stops adding parents to the node. Before
the algorithm begins, the possible parents of every variable must
be defined. Therefore, the human-expert experience is important
to define that order. If the order is known, a search over this order
is more efficient than searching over all DAGs. The K2 algorithm
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Fig. 9. Generation of a vector for the construction of the database.

maximizes the next function:

n dqi ;— 1 ' i
P(GID) = P(BS)HHMHNW!, (13)
k=1

i=1j=1

where N is the number of occurrences of {X;=ux;l
pa(X;))=mi}, r is the number of values of X;, ¢ is the num-
ber of values of pa(X;), and n is the number of variables. x;; and
mix are specific values of the variable X; and pa(X;). P(G|D) is
the score of the DAG G to represent the database D.

Fig. 10 illustrates the resulting network structure applying
the K2 algorithm. The order of the variables follows:

Jo=1, aF=2, 1F=3, Hy=4, Flow=35, Qgen=6, LL=7,
Flood=8, Drying=9, HRy, =10, Ov=11, Volt=12, I=13,
T=14, Power=15, pH, = 16.

For example, according to Fig. 10, a probabilistic dependence
between variable 1 (as parent) and variables {2, 3, 4, 6, 9 and
11} (as children) is established from the database.

Fig. 10. Bayesian network structure implementing the K2 algorithm.

4.3. The MCMC (Markov Chain Monte Carlo) algorithm

The MCMC algorithm is composed of a Markov Chain and
a Monte Carlo process. A Markov Chain is a stochastic process,
where the current state depends only on the past state. Applying
a Markov Chain in Bayesian networks, the chain is the sequence
of DAGs in which the search for the best DAG is performed.

A Monte Carlo is a probabilistic approximation for a very
complex, or unknown function. The Monte Carlo process finds
a very complex function (i.e. the DAG) that best agreed with the
evidence contained in the database by applying a probabilistic
approximation.

The MCMC algorithm starts at a specific point in the space
of DAGs. The search is performed through all the nearest neigh-
bors, and it moves to the neighbor that has the highest score. If
no neighbor has a higher score than the current point, a local
maximum has been found and the algorithm stops. A neighbor
is the graph that can be generated from the current graph by
adding, deleting or reversing a single arc.

Fig. 11 illustrates the resulting network structure applying
the MCMC algorithm where the variable order is the same as in
Fig. 10.

Fig. 11. Bayesian network structure applying the MCMC algorithm.



276 L.A.M. Riascos et al. / Journal of Power Sources 165 (2007) 267-278

4.4. Improving the network structure

In practice, the search-and-score algorithms are not exact,
and used only as initial approximations. Also, since the K2 and
MCMC algorithms applied different tradeoffs for searching the
structure, those algorithms can produce different results. But
both structures can be considered on the resulting network struc-
ture. To improve the network structure, the following steps are
executed:

o fusion of the results applying the K2 and MCMC algorithms;
e groups of variables are arranged in layers;
e constraint-based conditions and knowledge are applied.

The fusion of the results applying K2 and MCMC basically
confirms the edges present in both structures (Figs. 10 and 11)
and submits the remaining edges to erasing based on constrains
and domain knowledge.

For a better understanding of the relationship among vari-
ables, those are separated in several layers. In this structure,
three layers are considered: fault causes, pattern recognition,
and sensors. Fault causes are the possible causes of faults such
as faults in the air fan (aF), faults in the refrigeration system
(tF), growth of J,,, and low H» pressure (see Sections 3.1-3.4).
Sensors are variables that can easily be monitored using sensors
(such as output voltagegck V, electrical current Igc, tempera-
ture T, power, and Hj pressure). Pattern recognition is associated
with variables difficult to monitor in a real machine, but that play
an important role in a cause-effect structure and define a fault
pattern.

Some of the constraints to be considered are: (1) indepen-
dent fault cause assumption, i.e. only one fault takes place each
time, and one fault cause does not influence other fault cause;
(2) independent sensors—edges among sensors can be erased
because their values are always observed.

After that, domain knowledge is applied; basically, the sub-
mitted edges are compared with the relationship among variables
in the process. For example, an edge from variable 7 (stoichiom-
etry) to variable 16 (pH») appears in Fig. 11 (applying MCMC)
but not in Fig. 10 (applying K2), then this is one of the edges
submitted to be erased. According to Fig. 7, a variation of the
pH> does not have a significant influence in the stoichiometry,
then is concluded that this edge does not match the process evo-
lution and, therefore, the edge is erased. A similar process is
applied for all the remaining edges.

Fig. 12 illustrates the resulting Bayesian structure.

4.5. Conditional probability estimation

The probabilities in Bayesian networks are represented by CP
objects (CP = conditional probability), which define the proba-
bility distribution of a node given its parents. When all nodes
contain discrete values, a CP object can be described as a table.

Table 2 presents the CP obtained by the maximum posteriori
likelihood algorithm [15] on the network structure considered
in Fig. 12. Note that the probabilities of nodes 1-4, correspond
to prior probabilities (i.e. nodes 1-4 do not have parents), and

Table 2

Conditional probabilities of the Bayesian network (F =false, T =true)

node J,
F: 0.7465
T: 0.2535

node rF
F: 0.7490
T: 0.2510

node Flow
F F: 1.0000 0.0000
T F: 0.0000 1.0000
FT:0.6829 0.3171
T T: 0.0000 0.0000

node A
F:0.9697 0.0303
T: 0.2469 0.7531

node Drying
F: 0.9794 0.0206
T: 0.2777 0.7223

node Overld
F: 0.7728 0.2272
T: 0.7607 0.2393

node Igc
FFF: 0.6550 0.3450
T F F: 0.4946 0.5054
F T F: 0.9000 0.1000
T T F: 0.0000 0.0000
FFT:0.9689 0.0311
TFT:0.05820.9418
FTT:0.9298 0.0702
T T T: 0.0000 1.0000

node Power
F:0.9872 0.0128
T: 0.7565 0.2435

node aF
F:0.7572
T: 0.2428

node Hp
F:0.7473
T: 0.2527

node Qgen
FF: 0.8029 0.1971
T F: 0.0681 0.9319
FT:0.81230.1877
T T: 0.0000 0.0000

node Flood
F:0.9119 0.0881
T: 0.0014 0.9986

node HR gy
F F: 0.8467 0.1533
T F: 0.9000 0.1000
F T: 0.0000 1.0000
T T: 0.0000 0.0000
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Table 2 (Continued )

node Volt
F: 0.9637 0.0363
T: 0.8113 0.1887

node T
F: 1.0000 0.0000
T: 0.7604 0.2396

node pHy
F: 1.0000 0.0000
T: 0.0000 1.0000

the probabilities of nodes 5, 6, . . ., 16 correspond to conditional
probabilities.

The Bayesian network B composed of the network structure
G plus conditional probabilities CP is ready to be used for fault
diagnosis in a PEMFC. An inference is the computation of a
conditional probability p(X,4|Xg), where X, is the variable of
interest (e.g. the most probable fault cause) and Xg is the vari-
able, or set of variables that have been observed (i.e. the effects
observed by sensors).

There are many different algorithms for calculating the infer-
ence in Bayesian networks, which apply different tradeoffs
between speed, complexity, generality, and accuracy [15]. The
variable elimination algorithm permits the inference calculation
on a Bayesian network with a generic structure. The JavaBayes
System [8] implements this algorithm on a graphic interface.
Figs. 13 and 14 illustrate the utilization of this program for the
inference calculation for fault diagnosis in PEMFCs. Fig. 13
depicts the graphical representation of the Bayesian structure.
In this case, electrical current Irc and temperature 7T are the evi-
dence observed (i.e. Irc = 1 and T=1 indicate a type of abnormal
situation). In Fig. 14, the conditional probabilities have been cal-
culated for all fault causes (J,, aF, rF and H»). In this case, when
Irc =1 and T=1 the most probable fault cause is aF (reduction in
air flow) with 74% probability. The causes rF and J,, have inter-
mediary probabilities, 39% and 34%, respectively. And cause
Hy has the least probability, 4%.

Several tests have been conducted to verify the effectiveness
of the diagnosis; in all tests performed, the diagnosis always
indicated the true cause as the most probable one [16].

causes

e (S —

pattern

___________ —1

fm——————

Fig. 12. Network structure for fault diagnosis in a PEMFC.
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Fig. 13. Bayesian structure in the JavaBayes system.
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Fig. 14. Inference calculation in the JavaBayes system.

Network structures representing a diagnostic process play
a fundamental role for fault tolerant machines since they can
be associated with fault treatment processes (i.e. performing the
fault diagnosis to identify the fault cause and executing the auto-
matic recovery process). In [18] and [17] the fault detection
and fault treatment by automatic recovery processes in electric
autonomous guided vehicles (AGV) and machining processes
have been analyzed.

5. Conclusion

The construction of a network structure for fault diagnosis in
proton exchange membrane fuel cells (PEMFC) was executed
implementing probabilistic approaches.

Fault records of some variables were constructed including
variables difficult to monitor on a real machine. The record of all
relevant variables is essential for the construction of the network
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structure avoiding hidden variables, especially on intermediary
layers.

For the construction of a network structure, the sole imple-
mentation of probabilistic approaches (such as the K2 and
MCMC algorithms), is not enough for the construction of a
“good” network, as presented in Figs. 10 and 11. An understand-
ing of the process (e.g. processes in PEMFCs), is recommended,
particularly for applying constrain-based conditions and knowl-
edge to improve the network structure.

For the diagnostic process (i.e. the inference calculation),
the evidence was based on observations of variables that can
be easily monitored by sensors like voltmeters, ammeters, ther-
mocouples, etc. This allows an easy implementation of fault
diagnostic processes in FC systems.

The tests have shown agreement between the inference results
and the original fault causes. They will allow the implementation
of an on-line supervisor for fault diagnosis applying Bayesian
networks constructed as described in this research.

Topics such as the study of fault effects in FCs, the construc-
tion of network structures for fault diagnosis in FCs, and their
association to fault treatment processes are still under study, and
are still open to research contributions.
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