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bstract

This paper considers the effects of different types of faults on a proton exchange membrane fuel cell model (PEMFC). Using databases (which

ecord the fault effects) and probabilistic methods (such as the Bayesian-Score and Markov Chain Monte Carlo), a graphical–probabilistic structure
or fault diagnosis is constructed. The graphical model defines the cause-effect relationship among the variables, and the probabilistic method
aptures the numerical dependence among these variables. Finally, the Bayesian network (i.e. the graphical–probabilistic structure) is used to
xecute the diagnosis of fault causes in the PEMFC model based on the effects observed.

2006 Elsevier B.V. All rights reserved.
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. Introduction

Environmental issues have increased the demand for less pol-
uting energy generation technologies. Governmental actions
o support a hydrogen-based economy are under way, as well.

ost recent developments in proton exchange membrane fuel
ell (PEMFC) technology have made them commercially avail-
ble for stationary and mobile applications in the range of up to
00 kW.

Fuel cells (FCs) convert the energy contained in hydrogen
irectly into electricity with only water and heat as the prod-
cts of the reaction. Under certain pressure, hydrogen (H2) is
upplied into a porous conductive electrode (the anode). The
2 spreads through the electrode until it reaches the catalytic

ayer of the anode, where it reacts to form protons and electrons.
he H+ ions (or protons) flow through the electrolyte (a solid

embrane), and the electrons pass through an external electri-

al circuit, producing electrical energy. On the other side of the
ell, the oxygen (O2) spreads through the cathode and reaches
ts catalytic layer. On this layer, the O2, H+ protons, and elec-
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rons produce liquid water and residual heat as sub-products
5].

Several papers have been published considering FC opera-
ion in normal conditions; but only few of them addressed the
C operation under fault analysis. Faults are events that cannot
e ignored in any real machines, and their consideration is essen-
ial for improving the operability, flexibility, and autonomy of
ommercial equipment.

In this paper, Bayesian network algorithms are applied for
he construction of a graphical–probabilistic structure to fault
iagnosis in PEMFCs.

This paper is organized as follows. In Section 2, the basic con-
epts for the mathematical model of a PEMFC are introduced.
n Section 3, four types of faults in PEMFC are considered:
aults in the air fan; faults in the refrigeration system; growth
f the fuel crossover; and faults in the hydrogen pressure. Sec-
ion 4 introduces a short background of Bayesian networks and
earning algorithms to apply on fault diagnosis of PEMFC.
. The fuel cell model

A mathematical model of a fuel cell (FC) was used to study the
ossible fault effects. This model consists of an electro-chemical
nd a thermo-dynamical sub-model.

mailto:luis.riascos@ufabc.edu.br
dx.doi.org/10.1016/j.jpowsour.2006.12.003
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Table 1
Parameters of a PEMFC BCS, 500 W

Parameter Value

nr 32
A 64 cm2

� 178 �m
PO2 0.2095 atm
PH2 1 atm
RC 0.003�
B 0.016 V
ξ1 −0.948
ξ2 0.00286 + 0.0002 ln A+ (4.3 × 10−5) ln cH2

ξ3 7.6 × 10−5

ξ4 −1.93 × 10−4

ψ 23.0
J 2
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removed). Heat can be removed by the air flowing inside the
stack (Q̇rem1), by the refrigeration system (Q̇rem2 ), by water
68 L.A.M. Riascos et al. / Journal o

.1. The electrochemical model

The output voltage VFC of a single cell can be defined as the
esult of the following expression [11]:

FC = ENernst − Vact − Vohmic − Vcon (1)

ENernst is the thermodynamic potential of the cell representing
ts reversible voltage:

Nernst = 1.229 − 0.85 × 10−3(T − 298.15)

+ 4.31 × 10−5T

[
ln(PH2 ) + 1

2
ln(PO2 )

]
(2)

here: PH2 and PO2 (atm) are the hydrogen and oxygen pres-
ures, respectively, and T (K) is the operating temperature.

Vact is the voltage drop due to the activation of the anode and
he cathode:

act = −[ξ1 + ξ2T + ξ3T ln(cO2 ) + ξ4T ln(IFC)] (3)

here ξi (i = 1–4) are specific coefficients for every type of FC,
FC (A) is the electrical current, and cO2 (atm) is the oxygen
oncentration.

Vohmic is the ohmic voltage drop associated with the conduc-
ion of protons through the solid electrolyte, and of electrons
hrough the internal electronic resistance:

ohmic = IFC(RM + RC) (4)

here RC (�) is the contact resistance to electron flow, and RM
�) is the resistance to proton transfer through the membrane:

M = ρM�

A
,

M = 181.6[1 + 0.03(IFC/A) + 0.062(T/303)2(IFC/A)2.5]

[ψ − 0.634 − 3(IFC/A)] exp[4.18(T − 303/T )]
(5)

here ρM (� cm) is the specific resistivity of membrane, � (cm)
s the thickness of membrane, A (cm2) is the active area of the

embrane, and ψ is a coefficient for every type of membrane.
Vcon represents the voltage drop resulting from the mass trans-

ortation effects, which affects the concentration of the reacting
ases:

con = −B ln

(
1 − J

Jmax

)
(6)

here B (V) is a constant depending on the type of FC, Jmax is
he maximum electrical current density, and J is the electrical
urrent density produced by the cell. In general, J = Jout + Jn
here Jout is the real electrical output current density, and Jn is

he fuel crossover and internal loss current.
Considering a stack composed by several FCs, and as first

rder analysis, the output voltage is VStack = nrVFC, where nr is
he number of cells composing the stack. However constructive

haracteristic of the stack such as flow distribution and heat
ransfer should be taken [1,10,19].

In this paper, a mathematical model for a 500 W stack (man-
factured by BCS Technologies) is used. The parameters for

e
i

t

n 3 mA cm

max 0.469 A cm2

his particular model are presented in Table 1. In [6] the polar-
zation curve obtained with this model is compared to the
olarization curve of the manufacturing data sheet to validate the
odel.
In general, these parameters are based on manufacturing data

nd laboratory experiments, and their accuracy can affect the
imulation results. In [5], a multi-parametric sensitivity anal-
sis is performed to define the importance of the accuracy of
ach parameter. Basically, the parameters are classified in three
roups: insensitive (A, RC, �), sensitive (Jn, B,ψ, ξ4), and highly
ensitive parameters (Jmax, ξ3, ξ1). The accuracy was analyzed in
ormal conditions, considering variations around ±10% of their
ormal values. However, in fault conditions, those variations can
e stronger, as presented in Sections 3.1–3.4.

.2. The thermo-dynamical model

The calculation of the relative humidity and the operating
emperature of the FC essentially compose the thermo-
ynamical model [7].

.2.1. Temperature
The variation of temperature is obtained with the following

ifferential equation:

dT

dt
= �Q̇

MCs
(7)

here M (kg) is the whole stack mass, Cs (J K−1 kg−1) is the
verage specific heat coefficient of the stack, �Q̇ (J s−1) is the
ate of heat variation (i.e. the difference between the rate of
eat generated by the cell operation (Q̇gen) and the rate of heat
vaporation (Q̇rem3), and by heat exchanged with the surround-
ngs (Q̇rem4 ).

In this FC system, the refrigeration system is turned on when
he operating temperature is higher than 50 ◦C.
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.2.2. Relative humidity
A correct level of humidity should be maintained in the FC.

his level is measured through the relative humidity HR. The
elative humidity HRout of the output air is calculated from the
quation:

Rout = Pwin + Pwgen

Psat out
(8)

here PWin is the partial pressure of the water in the inlet air;
Wgen is the partial pressure of the water generated by the chem-

cal reaction [11]; Psat out is the saturated vapor pressure in the
utput air. Considering that HRout × Psat out = PW out, Eq. (8)
stablishes the balance of water: output = input + internal gen-
ration.

The Psat is calculated from the equation:

sat = T a exp
(b/T + c)

10

f T > 273.15 (◦K), then a = −4.9283; b = −6763.28; c = 54.22;
If the HR is much smaller than 100%, then the membrane

ries out and the conductivity decreases. On the other hand, a
elative humidity greater than 100% produces accumulation of
iquid water on the electrodes, which can become flooded and
lock the pores; this makes gas diffusion difficult. The result of
hese two conditions is a fairly narrow range of normal operat-
ng conditions. In conclusion the ideal operational condition is
R = 100%. In this equipment, the control system adjusts the

ir-reaction volume to maintain the HR close to 100%. In [16]
his control technique has been implemented.

In abnormal conditions some parameters change, i.e. flooding
nd drying condition affects RC and RM, respectively. Also in
9] the variation of the resistances had been associated with fault
etection of flooding and drying.
Fig. 1 (adapted from [11]) illustrates the variation of tem-
erature and relative humidity for different stoichiometry air
elationships (λ= 2, 4). The stoichiometry λ is the relationship
etween inlet air divided by the air necessary for the chemical

Fig. 1. Temperature and relative humidity for λ= 2, 4 (adapted from [11]).
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Fig. 2. Variation of output HR vs. input HR.

eaction. In general, the maximum efficiency occurs at about
0% of fuel utilization (H2) and 50% of oxygen utilization.
herefore, for a good concentration of O2 in the air through

he entire FC, λ should be bigger than 2 [11].
To prevent the membrane from drying, some researchers (e.g.

11]) have proposed extra humidification on the input air. How-
ver, the variation in the HR of the input air produces a very small
djustment in the output HR; for example, a variation of 10%
n the input HR represents a variation of approximately 2% on
he output HR. Thus, in many cases, the extra humidification of
he input air is not enough to resolve the drying problem. Fig. 2
llustrates the variation produced on the HR of output air by the
djustment in the HR of input air.

.3. Normal operation of a fuel cell

Fig. 3 illustrates the evolution of a few PEMFC variables in
ormal operating conditions as a function of time. The variables
re: voltagestack (V), electrical current IFC (A), temperature (◦C),
olume of air flow (L s−1), and stoichiometry air relationship
. In this test, the FC supports a constant-load demand; thus,

he voltage and current should vary by themselves to maintain
his demand (i.e. the output power would be constant). Also the
ontrol system adjusts the air-reaction volume to maintain the
R close to 100%.
The simulation begins with the FC system in stand-by (i.e.

ithout load, and at environmental temperature, approximately
5 ◦C). After the load requirement, the electrical equilibrium
s reached in less than 3 s (e.g. the equilibrium of voltage and
urrent). On the other hand, the temperature begins to increase
ntil, at t = 10 min, it reaches 50 ◦C. Then, the refrigeration
ystem is turned on. The temperature increases slowly until
he thermo-dynamical steady state is reached after t = 40 min.
ote that variations on the temperature have influenced the
volution in the airflow and λ. Also, variations in voltage and
urrent are performed, especially in the first 10 min, but they
re produced by a slower evolution of the thermo-dynamical
tate.
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Fig. 3. Evolution of variables of a FC in normal cond

. Faults in fuel cells

In general, two types of fault detection can be considered:

Faults that can be detected by monitoring a specific variable.
For example, the leak of fuel can be detected by installing a
specific gas sensor. In this case, a diagnosis is not necessary.
Faults that cannot be detected directly by monitoring or faults
that need some type of diagnosis.

Usually, fault detection on commercial fuel cell equipment is
imited to detection of faults of the first type. This work focuses
n fault detection of the second type.

Four types of faults in PEMFCs are considered in this study:
1) fault in the air fan, (2) fault in the refrigeration system, (3)
rowth of the fuel crossover, and (4) fault in the hydrogen pres-
ure. The effects of these faults are included in the mathematical
odel to analyze the behavior of the FC system in fault operation

onditions.

.1. Fault in the air reaction fan

A reduction of the reaction air by a fault in the air fan can
roduce two major effects: (1) accumulation of liquid water than
annot be evaporated and (2) reduction of O2 volume below that
ecessary for a complete reaction with the H2.

A common method for removing excess water inside the FC

s using the air flowing through it. The correct variation of the
toichiometry λ maintains the HR proximal to 100%. However,
hen a fault in the air fan takes place, this becomes impossible.
his fault reduces the air reaction flow, which reduces the water

i
I
w

deriving from a mathematical model in MATLAB®.

vaporation volume and permits the accumulation of water. A
reat accumulation of water causes the flooding of electrodes
aking gas diffusion difficult and affecting the performance

f the FC. These effects are simulated by Eq. (9), which was
btained empirically.

c(k) = Rc(0) ·
(
wacum(k)

const1

)0.8

, Jmax(k) = Jmax(0)

(wacum(k)/const1)1.2

(9)

here Jmax(0) is the value of the maximum electrical current
ensity at the initial state (normal condition), Rc(0) is the value
f the variable at the initial state (normal condition), wacum(k)
s the volume of water accumulated at instant k, and const1 is a
onstant defining when the electrodes are led to flooding.

The second effect of a fault in the air fan occurs when λ
s below the practical and recommended value. In this case,
he O2 concentration is reduced and the exit air completely
epleted of O2. This reduction of O2 concentration produces a
egative effect on the ENernst (Eq. (2)) and increase on the Vact
Eq. (3)). In this case, the O2 concentration changes according
o empirical Eq. (10):

O2(k) = cO2(0)√
const2/λ(k)

(10)

here cO2(k) is the O2 concentration at instant k, cO2(0) is the nor-
al O2 concentration in the air, and const2 is a constant defining
hen λ is lower than necessary for the chemical reaction.

Fig. 4 illustrates the evolution of a few variables when a fault

n the air fan is considered. The variables are voltagestack (V),
FC (A), temperature (◦C), air flow (L s−1), λ, and accumulated
ater (L). In this case, the starting point of the simulation
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Fig. 4. Evolution of variable

t = 0) is an FC on thermal steady state. The fault in the air
an takes place at t = 30 min. The initial effect is the variation
f the airflow volume, which reduces λ close to 1, affecting
oltage and IFC. Also, this fault produces accumulation of
iquid water and, at t = 45 min, the accumulation of water is
nough to produce variation on the resistance of electrodes
ffecting voltage and IFC continuously.

.2. Fault in the refrigeration system

The refrigeration system maintains temperature within the
ormal operating conditions. When the temperature increases,
he reaction air has a drying effect and reduces the relative
umidity HR. A low HR can produce a catastrophic effect on
he polymer electrolyte membrane, which not only totally relies
pon high water content, but is also very thin (and thus prone to
apid drying out). The drying of the membrane changes the resis-
ance of membrane to proton flow (RM, Eq. (4)). RM is affected
y the adjustment of ψ (Eq. (5)), which varies according to
mpirical equation (11):

(k) = ψ(0)

(const3/HRout(k))1.12 (11)

here, const3 defines when the membrane is led to drying.
The variation of RM produces an increase in the ohmic voltage

rop Vohmic, equation (4), and it produces the reduction of VFC,
q. (1).

Fig. 5 illustrates the evolution of the variables voltagestack
V), IFC (A), temperature (◦C), air flow (L s−1), λ, and heat

emoved by the refrigeration system Q̇rem2 (W), when a total
ault in the refrigeration system is considered at t = 30 min.

The initial fault effect (at t = 30 min.) is the increase in
emperature. Then, the FC controller automatically reduces λ,

3

g

fault in the reaction air fan.

aintaining the performance of the FC. However, when λ= 2
i.e. the minimum value recommended) is not further reduced,
nd then the drying effect has a continuous influence on the
oltagestack, IFC, air flow and other variables.

.3. Increase of fuel crossover (Jn)

There is a small amount of wasted fuel that migrates through
he membrane. It is defined as fuel crossover—some hydrogen
ill diffuse from the anode (through the electrolyte) to the cath-
de, react directly with the oxygen, and produce no current for
he FC.

In normal conditions, the flow of fuel through the membrane
Jn) is very small, typically representing only a few mA cm2. A
udden increase in this variable can be associated with rupture
f membrane.

This variation of Jn produces an increase in the concentration
oltage drop (Vcon Eq. (6)), and therefore a reduction of VFC,
q. (1).

Fig. 6 illustrates the evolution of the variables voltagestack
V), IFC (A), temperature (◦C), air flow (L s−1), and λ, when a
udden variation of Jn is performed from 0.003 to 0.1 A cm2 at
= 30 min.

The initial effect is a variation on all the variables including
he power produced by the FC. The FC controller automati-
ally adjusts the stoichiometry (by reducing the airflow) until, at
= 47 min, it reaches λ= 2, and then cannot be further reduced.
his affects the output HR and other variables.
.4. Fault in the hydrogen feed line

In general, for mobile and stationary applications, the hydro-
en is supplied from a high-pressure bottle and reduced by a
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ressure controller. In normal conditions, the hydrogen pressure
s assumed to be constant (1 atm). Variation in the hydrogen
ressure affects the performance of the FC. A lower pressure
egatively affects the performance of the FC. The reduction
f H2 pressure reduces the density of current J affecting IFC,

ecreases ENernst equation (2), increases Vact equation (3), and
as a corresponding effect on VFC, equation (1).

Fig. 7 illustrates the evolution of the variables voltagestack
V), IFC (A), temperature (◦C), air flow (L s−1), λ, and H2 pres-

s
f
v
o

Fig. 6. Evolution of variab
lt in the refrigeration system.

ure (atm), when a reduction on the H2 pressure is considered
rom 1 to 0.2 atm at t = 30 min.

Fault in the oxygen feed line (such as a fault produced by
locking the air filter), can be an interesting issue in a fault-
olerant FC system. In practical applications, the oxygen is

upplied from the air where it has a constant pressure. There-
ore, a fault in the air reaction feed line does not produce a
ariation in the air (or oxygen) pressure; instead, a reduction
n the O2 concentration can be produced. However, the effects

les by increasing Jn.
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Fig. 7. Evolution of variab

f this fault are similar to a fault in the air reaction fan (see
ection 3.1).

In Section 3, the effects of four types of faults on the FC
peration were explained simply and directly. But, when a fault
appens, an interconnected dependence among the variables is
erformed. That makes diagnosis of the fault cause difficult.
igs. 4–7 illustrate this dependence where, in all cases of faults,
ll the variables have performed changes.

By implementing those types of faults, and their effects, on
he mathematical model of the FC, databases for recording the
volution of variables in fault conditions can be constructed.
hen, probabilistic approaches can be applied on the databases

o qualify and quantify the dependency relationship among the
ariables. In the next section, Bayesian networks are considered
or the construction of a graphical–probabilistic structure based
n databases.

. Bayesian networks for fault diagnosis

Bayesian networks have been extensively applied to fault
iagnosis, e.g. [12] and [3]; however, in the area of fuel cells,
t is a new field. In [12], a Bayesian network is implemented
or controlling an unsupervised fault tolerant system to generate
xygen from the CO2 on Mars atmosphere. In [3], Bayesian net-
ork is applied for fault diagnosis in a power delivery system.
ne advantage of Bayesian network is that it allows the com-
ination of expert knowledge of the process and probabilistic
heory for the construction of a diagnostic procedure; neverthe-
ess, both are recommended for the construction of a “good”

ayesian network.

A Bayesian network is a structure that graphically mod-
ls relationships of probabilistic dependence within a group
f variables. A Bayesian network B = (G,CP) is composed of

i

(
f

reduction in H2 pressure.

he network structure and the conditional probabilities (CP). A
irected acyclic graph (DAG) represents the graphical structure
, where each node of the graph is associated to a variable Xi,
nd each node has a set of parents pa(Xi). The conditional prob-
bilities CP, numerically capture the probabilistic dependence
mong the variables [2].

The construction of a graph to describe a diagnostic process
an be executed in two ways:

Based on human knowledge about the process, where relation-
ships among variables are established to define the criteria for
choosing the next state (i.e. the relationship between variables
and parents);
Based on probabilistic methods using databases of records.

The construction of a Bayesian structure G based on
nowledge can be relatively simple; but its efficacy depends
ompletely on the human expert knowledge about that domain.

The implementation of probabilistic methods for the struc-
ure learning can follow two approaches: constraint-based and
earch-and-score. In the constraint-based approach, the starting
oint is an initially given graph G. And then, edges are removed
r added if certain conditional independencies are measured in
he database. In the search-and-score approach, a search through
he space of possible DAGs is performed for finding for the best
AG. In this research, the Bayesian-score (K2) [4] and Markov
hain Monte Carlo (MCMC) [14] algorithms are applied. The
2 and MCMC algorithms are relatively easy to be applied
n an automatic generation of the graph, and they are already

mplemented in the MatLab BNToolbox [13].

The number of DAGs, as a function of the number of nodes
f(n)), grows exponentially with n. According to [4], a recursive
unction can be used to know the number of DAGs as function
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f the number of variables:

(n) =
n∑
i=1

(−1)i+1
(n
i

)
2i(n−i)f (n− i) (12)

For example, a model with 16 variables (n = 16) has
.38 × 1046 possible DAGs. Thus, an exhaustive search on the
pace of all DAGs is not practical. Therefore, a local (e.g. K2)
r a stochastic (e.g. MCMC) search should be made.

In this work, the construction of a Bayesian network for
ault diagnosis begins with the generation of a graph applying
robabilistic methods and, after that, refined using constrains
nd domain knowledge. The complete sequence consists of the
ollowing steps:

. Construction of the database—the records are provided
from a mathematical model of a PEMFC implemented on
MatLab®. Field experiments could also provide those records
as considered in [16]; however, two major problems are
pointed out: (a) a large amount of data is necessary where
the generation of each case takes around 2 h of supervised
experiments, and (b) variables such as Qgen, flooding, λ, etc,
impose additional challenges to be monitored.

. Implementation of search-and-score algorithms (K2 and
MCMC) to find the initial structure. The probabilistic
approaches were implemented using the BNT (Bayesian Net-
work Toolbox) developed for MatLab® [13].

. Constraint-based conditions and knowledge are applied for
improving the structure.

. Calculation of conditional probabilities. The conditional
probabilities are calculated on the resulting structure.

.1. Database generation

In this research, the diagnosis is executed at a specific
oment, only if abnormal evolution of any variable is mon-

tored; the idea is to associate this evolution with symptoms
f incipient faults. Then binary states of the variables are gen-
rated (0 = normal, 1 = abnormal). The general procedure is to
onitor a specific variable; if after a fault takes place and

he value of such variable is off a certain tolerance band,
hen a flag should be turned to “1”. Fig. 8 represents the
ange of tolerance of the IFC and the evolution after a fault at
= 30 min.

The next step is the construction of a vector containing the
alue of all variables. This vector corresponds to a single case
n the database with values of all variables in a certain period.

From the mathematical model, the evolution of variables that
an be difficult to monitor on a real machine (such as Qgen or HR)
an be observed. Records of all variables are essential for the
onstruction of the network structure avoiding hidden variables.

The variables considered are the following:
Jn = fault by fuel crossover
aF = fault in the air fan
rF = fault in the refrigeration system
H2 = fault by low H2 pressure

t
b
t
i

Fig. 8. Evolution of IFC by a fault at t = 30 min.

Flow = volume of air flow
Qgen = generated heat
LL = stoichiometry air relationship λ
HRout = output relative humidity
Drying = drying of membrane
Flood = flooding of electrodes
Ov = overload (i.e. the FC is working close to the maximum
load; in those cases, same variables can perform a different
evolution)
Volt = voltagestack
I = IFC electrical current of the FC
T = temperature
Power = difference between real output power and required
load
pH2 = H2 pressure

A database with 10,000 cases was constructed for the struc-
ure learning of a Bayesian network for fault diagnosis in fuel
ells. The database considers different operational conditions
ith different fault causes simulated and, selected in a random

equence.
A vector for fault diagnosis in FC has the structure presented

n Fig. 9.

.2. The Bayesian-score (K2) algorithm

The K2 algorithm [4] is a very useful search algorithm. Ini-
ially, each node has no parents. It then incrementally adds those
arents, the addition of which increases the score of the result-
ng structure even more. When the addition of no single parent
ncreases the score, it stops adding parents to the node. Before

he algorithm begins, the possible parents of every variable must
e defined. Therefore, the human-expert experience is important
o define that order. If the order is known, a search over this order
s more efficient than searching over all DAGs. The K2 algorithm
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Fig. 9. Generation of a vector

aximizes the next function:

(G|D) = P(Bs)
n∏
i=1

qi∏
j=1

(ri − 1)!

(Nij + ri − 1)!

ri∏
k=1

Nijk!, (13)

here Nijk is the number of occurrences of {Xi = xij|
a(Xi) =πik}, r is the number of values of Xi, q is the num-
er of values of pa(Xi), and n is the number of variables. xij and
ik are specific values of the variable Xi and pa(Xi). P(G|D) is

he score of the DAG G to represent the database D.
Fig. 10 illustrates the resulting network structure applying

he K2 algorithm. The order of the variables follows:
Jn = 1, aF = 2, rF = 3, H2 = 4, Flow = 5, Qgen = 6, LL = 7,

lood = 8, Drying = 9, HRout = 10, Ov = 11, Volt = 12, I = 13,

= 14, Power = 15, pH2 = 16.
For example, according to Fig. 10, a probabilistic dependence

etween variable 1 (as parent) and variables {2, 3, 4, 6, 9 and
1} (as children) is established from the database.

Fig. 10. Bayesian network structure implementing the K2 algorithm.

b
n
m
i
a

t
F

construction of the database.

.3. The MCMC (Markov Chain Monte Carlo) algorithm

The MCMC algorithm is composed of a Markov Chain and
Monte Carlo process. A Markov Chain is a stochastic process,
here the current state depends only on the past state. Applying
Markov Chain in Bayesian networks, the chain is the sequence
f DAGs in which the search for the best DAG is performed.

A Monte Carlo is a probabilistic approximation for a very
omplex, or unknown function. The Monte Carlo process finds
very complex function (i.e. the DAG) that best agreed with the
vidence contained in the database by applying a probabilistic
pproximation.

The MCMC algorithm starts at a specific point in the space
f DAGs. The search is performed through all the nearest neigh-
ors, and it moves to the neighbor that has the highest score. If
o neighbor has a higher score than the current point, a local
aximum has been found and the algorithm stops. A neighbor

s the graph that can be generated from the current graph by
dding, deleting or reversing a single arc.
Fig. 11 illustrates the resulting network structure applying
he MCMC algorithm where the variable order is the same as in
ig. 10.

Fig. 11. Bayesian network structure applying the MCMC algorithm.
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Table 2
Conditional probabilities of the Bayesian network (F = false, T = true)

node Jn

F: 0.7465
T: 0.2535

node rF
F: 0.7490
T: 0.2510

node Flow
F F: 1.0000 0.0000
T F: 0.0000 1.0000
F T: 0.6829 0.3171
T T: 0.0000 0.0000

node λ
F: 0.9697 0.0303
T: 0.2469 0.7531

node Drying
F: 0.9794 0.0206
T: 0.2777 0.7223

node Overld
F: 0.7728 0.2272
T: 0.7607 0.2393

node IFC

F F F: 0.6550 0.3450
T F F: 0.4946 0.5054
F T F: 0.9000 0.1000
T T F: 0.0000 0.0000
F F T: 0.9689 0.0311
T F T: 0.0582 0.9418
F T T: 0.9298 0.0702
T T T: 0.0000 1.0000

node Power
F: 0.9872 0.0128
T: 0.7565 0.2435

node aF
F: 0.7572
T: 0.2428

node H2

F: 0.7473
T: 0.2527

node Qgen

F F: 0.8029 0.1971
T F: 0.0681 0.9319
F T: 0.8123 0.1877
T T: 0.0000 0.0000

node Flood
F: 0.9119 0.0881
T: 0.0014 0.9986

node HRout

F F: 0.8467 0.1533
T F: 0.9000 0.1000
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.4. Improving the network structure

In practice, the search-and-score algorithms are not exact,
nd used only as initial approximations. Also, since the K2 and
CMC algorithms applied different tradeoffs for searching the

tructure, those algorithms can produce different results. But
oth structures can be considered on the resulting network struc-
ure. To improve the network structure, the following steps are
xecuted:

fusion of the results applying the K2 and MCMC algorithms;
groups of variables are arranged in layers;
constraint-based conditions and knowledge are applied.

The fusion of the results applying K2 and MCMC basically
onfirms the edges present in both structures (Figs. 10 and 11)
nd submits the remaining edges to erasing based on constrains
nd domain knowledge.

For a better understanding of the relationship among vari-
bles, those are separated in several layers. In this structure,
hree layers are considered: fault causes, pattern recognition,
nd sensors. Fault causes are the possible causes of faults such
s faults in the air fan (aF), faults in the refrigeration system
rF), growth of Jn, and low H2 pressure (see Sections 3.1–3.4).
ensors are variables that can easily be monitored using sensors
such as output voltagestack V, electrical current IFC, tempera-
ure T, power, and H2 pressure). Pattern recognition is associated
ith variables difficult to monitor in a real machine, but that play

n important role in a cause-effect structure and define a fault
attern.

Some of the constraints to be considered are: (1) indepen-
ent fault cause assumption, i.e. only one fault takes place each
ime, and one fault cause does not influence other fault cause;
2) independent sensors—edges among sensors can be erased
ecause their values are always observed.

After that, domain knowledge is applied; basically, the sub-
itted edges are compared with the relationship among variables

n the process. For example, an edge from variable 7 (stoichiom-
try) to variable 16 (pH2) appears in Fig. 11 (applying MCMC)
ut not in Fig. 10 (applying K2), then this is one of the edges
ubmitted to be erased. According to Fig. 7, a variation of the
H2 does not have a significant influence in the stoichiometry,
hen is concluded that this edge does not match the process evo-
ution and, therefore, the edge is erased. A similar process is
pplied for all the remaining edges.

Fig. 12 illustrates the resulting Bayesian structure.

.5. Conditional probability estimation

The probabilities in Bayesian networks are represented by CP
bjects (CP = conditional probability), which define the proba-
ility distribution of a node given its parents. When all nodes
ontain discrete values, a CP object can be described as a table.
Table 2 presents the CP obtained by the maximum posteriori
ikelihood algorithm [15] on the network structure considered
n Fig. 12. Note that the probabilities of nodes 1–4, correspond
o prior probabilities (i.e. nodes 1–4 do not have parents), and

F T: 0.0000 1.0000
T T: 0.0000 0.0000



L.A.M. Riascos et al. / Journal of Power Sources 165 (2007) 267–278 277

Table 2 (Continued )

node Volt
F: 0.9637 0.0363
T: 0.8113 0.1887

node T
F: 1.0000 0.0000
T: 0.7604 0.2396

node pH2
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Fig. 13. Bayesian structure in the JavaBayes system.
F: 1.0000 0.0000
T: 0.0000 1.0000

he probabilities of nodes 5, 6, . . ., 16 correspond to conditional
robabilities.

The Bayesian network B composed of the network structure
plus conditional probabilities CP is ready to be used for fault

iagnosis in a PEMFC. An inference is the computation of a
onditional probability p(Xq|XE), where Xq is the variable of
nterest (e.g. the most probable fault cause) and XE is the vari-
ble, or set of variables that have been observed (i.e. the effects
bserved by sensors).

There are many different algorithms for calculating the infer-
nce in Bayesian networks, which apply different tradeoffs
etween speed, complexity, generality, and accuracy [15]. The
ariable elimination algorithm permits the inference calculation
n a Bayesian network with a generic structure. The JavaBayes
ystem [8] implements this algorithm on a graphic interface.
igs. 13 and 14 illustrate the utilization of this program for the

nference calculation for fault diagnosis in PEMFCs. Fig. 13
epicts the graphical representation of the Bayesian structure.
n this case, electrical current IFC and temperature T are the evi-
ence observed (i.e. IFC = 1 and T = 1 indicate a type of abnormal
ituation). In Fig. 14, the conditional probabilities have been cal-
ulated for all fault causes (Jn, aF, rF and H2). In this case, when
FC = 1 and T = 1 the most probable fault cause is aF (reduction in
ir flow) with 74% probability. The causes rF and Jn have inter-
ediary probabilities, 39% and 34%, respectively. And cause
2 has the least probability, 4%.

Several tests have been conducted to verify the effectiveness

f the diagnosis; in all tests performed, the diagnosis always
ndicated the true cause as the most probable one [16].

Fig. 12. Network structure for fault diagnosis in a PEMFC.

a
b
f
m
a
a
h

5

p
i

v
r

Fig. 14. Inference calculation in the JavaBayes system.

Network structures representing a diagnostic process play
fundamental role for fault tolerant machines since they can

e associated with fault treatment processes (i.e. performing the
ault diagnosis to identify the fault cause and executing the auto-
atic recovery process). In [18] and [17] the fault detection

nd fault treatment by automatic recovery processes in electric
utonomous guided vehicles (AGV) and machining processes
ave been analyzed.

. Conclusion

The construction of a network structure for fault diagnosis in
roton exchange membrane fuel cells (PEMFC) was executed

mplementing probabilistic approaches.

Fault records of some variables were constructed including
ariables difficult to monitor on a real machine. The record of all
elevant variables is essential for the construction of the network
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tructure avoiding hidden variables, especially on intermediary
ayers.

For the construction of a network structure, the sole imple-
entation of probabilistic approaches (such as the K2 and
CMC algorithms), is not enough for the construction of a

good” network, as presented in Figs. 10 and 11. An understand-
ng of the process (e.g. processes in PEMFCs), is recommended,
articularly for applying constrain-based conditions and knowl-
dge to improve the network structure.

For the diagnostic process (i.e. the inference calculation),
he evidence was based on observations of variables that can
e easily monitored by sensors like voltmeters, ammeters, ther-
ocouples, etc. This allows an easy implementation of fault

iagnostic processes in FC systems.
The tests have shown agreement between the inference results

nd the original fault causes. They will allow the implementation
f an on-line supervisor for fault diagnosis applying Bayesian
etworks constructed as described in this research.

Topics such as the study of fault effects in FCs, the construc-
ion of network structures for fault diagnosis in FCs, and their
ssociation to fault treatment processes are still under study, and
re still open to research contributions.
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